Using a sequential latent class approach for model averaging: Benefits in forecasting and behavioural insights
Thomas O. Hancock,
Stephane Hess,
Andrew Daly and
James Fox
Transportation Research Part A: Policy and Practice, 2020, vol. 139, issue C, 429-454
Abstract:
Despite the frequent use of model averaging in many disciplines from weather forecasting to health outcomes, it is not yet an idea often considered in travel behaviour or choice modelling. The idea behind model averaging is that a single model can be created by calculating contribution weights for a set of candidate models, depending on their relative performance, thus creating an ‘average’. There are different ways of doing this, with a clear distinction between looking at the overall performance of each model or by doing this at the level of individual agents or observations. In this paper, we demonstrate that a relatively straightforward adaptation of latent class models can be used for the latter approach and show how this can be an effective method for travel behaviour modelling. We identify two key opportunities for model averaging. The first is the situation where an analyst faces the difficult choice between a number of advanced models, all with some desirable properties. The second is the situation where advanced models cannot be used due to the size of the data and/or choice sets. Our tests demonstrate that in both cases, model averaging using a sequential latent class framework results in a consistent improvement in model fit for both estimation and in forecasting with subsets of validation samples. Additionally, we demonstrate that model averaging can be used to obtain more reliable elasticities and welfare measures by averaging across outputs obtained from the set of candidate models. In terms of actual implementation of model averaging, we present a simple expectation–maximisation (EM) algorithm which can deal with very large numbers of candidate models within the same model averaging structure, unlike the typical case with classical estimation approaches for latent class.
Keywords: Model selection; Model averaging; Choice modelling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856420306480
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:139:y:2020:i:c:p:429-454
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2020.07.005
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().