EconPapers    
Economics at your fingertips  
 

Spatio-temporal analysis of on-demand transit: A case study of Belleville, Canada

Irum Sanaullah, Nael Alsaleh, Shadi Djavadian and Bilal Farooq

Transportation Research Part A: Policy and Practice, 2021, vol. 145, issue C, 284-301

Abstract: The rapid increase in the cyber-physical nature of transportation, availability of GPS data, mobile applications, and effective communication technologies have led to the emergence of On-Demand Transit (ODT) systems. In September 2018, the City of Belleville in Canada started an on-demand public transit pilot project, where the late-night fixed-route (RT 11) was substituted with the ODT providing a real-time ride-hailing service. We present an in-depth analysis of the spatio-temporal demand and supply, level of service, and origin and destination patterns of Belleville ODT users, based on the data collected from September 2018 till May 2019. The independent and combined effects of the demographic characteristics (population density, working-age, and median income) on the ODT trip production and attraction levels were studied using GIS and the K-means machine learning clustering algorithm. The results indicate that ODT trips demand is highest for 11:00 pm–11:45 pm during the weekdays and 8:00 pm–8:30 pm during the weekends. We expect this to be the result of users returning home from work or shopping. Results showed that 39% of the trips were found to have a waiting time of smaller than 15 min, while 28% of trips had a waiting time of 15–30 min. The dissemination areas with higher population density, lower median income, or higher working-age percentages tend to have higher ODT trip attraction levels, except for the dissemination areas that have highly attractive places like commercial areas. For the sustainable deployment of ODT services, we recommend (a) proactively relocating the empty ODT vehicles near the neighbourhoods with high level of activity, (b) dynamically updating the fleet size and location based on the anticipated changes in the spatio-temporal demand, and (c) using medium occupancy vehicles, like vans or minibuses to ensure high level of service.

Keywords: On-demand transit; Ride-hailing; Demand patterns; K-means clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856421000288
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:145:y:2021:i:c:p:284-301

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2021.01.020

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:145:y:2021:i:c:p:284-301