Examining the driver-pedestrian interaction at pedestrian crossings in the connected environment: A Hazard-based duration modelling approach
Md. Mazharul Haque,
Oscar Oviedo-Trespalacios,
Anshuman Sharma and
Zuduo Zheng
Transportation Research Part A: Policy and Practice, 2021, vol. 150, issue C, 33-48
Abstract:
The availability of advisory warnings via Vehicle-to-Vehicle and Vehicle-to-Infrastructure communication in the connected environments is expected to gradually increase over the next few years. Much of the research on advisory warning systems have examined driving behaviour in response to unexpected driving hazards; however, very little research has been conducted on common driving interactions such as interacting with pedestrians at pedestrian crossings. Therefore, the aim of this study is to investigate the effects of the connected environment on driving behaviour at pedestrian crossings. The connected environment was designed within the CARRS-Q advanced driving simulator. A combination of auditory (beep sound) and imagery message was simultaneously displayed on the windscreen to advise the driver on the presence of a pedestrian entering from a sidewalk. Seventy-eight licensed drivers drove the simulator in two driving conditions, namely, baseline and connected environment. The participants were 18–65 years old, and a third of them were females. Drivers' response to the driving aids and the braking behaviour were analysed in the latent response phase and the observable response phase, and the corresponding response times were modelled using the hazard-based duration modelling approach. In particular, this study applied the Weibull accelerated failure time model with shared frailty accounting for multiple observations from the same driver. Results showed that the time taken to respond to the pedestrian in the latent response phase was longer when the advisory warning was provided to the drivers, but the corresponding time in the observable response phase was shorter, indicating that drivers take an informed decision in the connected environment. Moreover, the safety margin—measured in terms of time-to-collision—was higher in the connected environment than the traditional driving environment, indicating a safer behavioural adaptation towards the connected environment.
Keywords: Connected environment; Advisory warning system; Response time; Driving behaviour; Weibull accelerated failure time (AFT) model; ADAS (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856421001427
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:150:y:2021:i:c:p:33-48
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2021.05.014
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().