EconPapers    
Economics at your fingertips  
 

Relocating operational and damaged bikes in free-floating systems: A data-driven modeling framework for level of service enhancement

Ximing Chang, Jianjun Wu, Huijun Sun, Gonçalo Homem de Almeida Correia and Jianhua Chen

Transportation Research Part A: Policy and Practice, 2021, vol. 153, issue C, 235-260

Abstract: Free-floating bike sharing is an innovative and sustainable travel mode, where shared bikes can be picked up and returned at any proper place on the streets and not just at docking stations. Nevertheless, in these systems, two major problems arise. One is the imbalance of free-floating shared bikes (FFSB) between zones due to one-way trips, the other is the damaged bikes that must be brought for repair. In this study, a modeling framework for dynamic relocating operational and damaged bikes is proposed that starts with predicting the number and location of shared bikes using deep learning algorithms. The demand forecasting model adopts the Encoder-Decoder architecture embedded with the attention mechanism to further enhance the model’s prediction ability and flexibility. Then, a data-driven optimization model for FFSB relocations is presented, where the multi-period optimization is applied to dynamically plan the relocation activities throughout the day. A new hybrid metaheuristic algorithm that incorporates variable neighborhood search (VNS) and enhanced simulated annealing (ESA) algorithm is developed for solving the relocating problem, in which satisfactory performance is observed from the numerical example. We test the proposed framework with the real-world FFSB data from Beijing, China. The results show that relocating both operational and damaged bikes timely decreases the probability of users finding damaged bikes in the system, but leads to higher relocation costs. For peak-hours, considering only the operational bikes for relocation is the most effective strategy given the limited relocation resources. It is urgent at those times of the day to focus on providing bikes to clients where they are undersupplied.

Keywords: Free-floating bike-sharing; Demand forecasting; Bike relocation; Multi-period optimization; Damaged bikes’ collection (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856421002408
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:153:y:2021:i:c:p:235-260

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2021.09.010

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:153:y:2021:i:c:p:235-260