An empirical Bayes approach to quantifying the impact of transportation network companies (TNCs) operations on travel demand
Yunkyung Choi,
Subhrajit Guhathakurta and
Anurag Pande
Transportation Research Part A: Policy and Practice, 2022, vol. 161, issue C, 269-283
Abstract:
Assessing the impacts of new and disruptive technologies on the transportation system is crucial for planners and policymakers. This study offers an innovative method for estimating the impact of transportation network company (TNC, e.g., Uber and Lyft) operations on travel demand. Among various measures of travel demand, vehicle‐miles traveled (VMT) is tested due to its broad applications in evaluating changes in transportation policy. The evaluation is based on counterfactual theory, which compares VMT estimates after the TNCs introduction to a region to what the VMT would have been without the TNCs. The latter of the two is a counterfactual, and this study develops and demonstrates the empirical Bayes (EB) approach for obtaining counterfactual VMT estimates. The EB approach is widely used to estimate crash frequency after a particular traffic safety treatment is applied to a roadway location. We reinterpret the traffic safety treatment as being akin to the introduction of TNCs in the Atlanta region and the estimation of crash frequency as analogous to the resulting change in VMT. Since the crash experience of a roadway site may be affected by several factors, like the VMT of a region, a robust counterfactual estimate is necessary for conducting a before-after study. A counterfactual VMT estimate is obtained by combining two VMT estimates from 1) the cross‐sectional analysis for Atlanta and its regional peers and 2) the time-series analysis based on the longitudinal trend from the Atlanta region. We measure the difference between the counterfactual VMT estimate and the reported VMT estimate as an indicator of TNC impact. We find that the VMT estimates in a counterfactual scenario without TNCs are lower than the actual VMT estimates between 2012 and 2018. We estimate that the TNCs may be accounting for extra 0.6 percent average annual growth in VMT. The findings may support future TNC-related planning and policymaking. We expect the approach to be useful in estimating the effects of other disruptions, such as connected and autonomous vehicles (CAVs) introduction and lasting impact of the pandemic, on VMT.
Keywords: Vehicle miles of travel; VMT estimation; TNCs; Empirical Bayes; Counterfactual theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856422000969
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:161:y:2022:i:c:p:269-283
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2022.04.008
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().