EconPapers    
Economics at your fingertips  
 

Faster, greener, scooter? An assessment of shared e-scooter usage based on real-world driving data

Konstantin Krauss, Till Gnann, Tobias Burgert and Kay W. Axhausen

Transportation Research Part A: Policy and Practice, 2024, vol. 181, issue C

Abstract: In recent years, few transportation modes have gained so much attention so quickly as shared e-scooters. Debates focus on usage patterns over shift effects to environmental impacts. Previous research has mainly been conducted in Asia and North America and in metropolitan areas. Potential interdependencies have been analysed mostly towards public transport (PT). Surprisingly, investigations concerning the usage of shared e-scooters and other shared mobility services have been scarce. However, understanding possible (inter-)dependencies and potentials for inter- and multimodality is crucial for policymakers and transport planners to design efficient and sustainable transportation systems. This is why we draw on an original data set of 118,047 shared e-scooter trips in Karlsruhe, a non-metropolitan city in southwest Germany and add information about carsharing and PT. Apart from station information for both modes, we add departure information for tramways, and weather data. Shared e-scooter data is retrieved via the local providers from November 2020 to April 2021, information about the stations of carsharing and PT is added via OpenStreetMap, and tramway service data is retrieved via the local authority. We find an average trip distance of 1.40 km and substantially less usage on Sundays. The potential of combining shared e-scooters is higher for PT than for carsharing. Shared e-scooter trips show longer distances in times of lower or none PT service. Negative binomial regression models with fixed effects for the PT or carsharing stations show that the number of tram departures positively affects shared e-scooter usage, particularly at off-peak times. Applying mode shift scenarios and focusing on the usage phase, the energy consumption effect of shared e-scooters is found to be between −5 to +0.5 TWh. However, it requires providers to revisit their operations and policy to rethink regulation to get even close to the multimodal or energy consumption potential.

Keywords: Shared e-scooters; Multimodality; Intermodality; Energy consumption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856424000454
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:181:y:2024:i:c:s0965856424000454

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2024.103997

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:181:y:2024:i:c:s0965856424000454