EconPapers    
Economics at your fingertips  
 

Assessing effects of pandemic-related policies on individual public transit travel patterns: A Bayesian online changepoint detection based framework

Yuqian Lin, Yang Xu, Zhan Zhao, Wei Tu, Sangwon Park and Qingquan Li

Transportation Research Part A: Policy and Practice, 2024, vol. 181, issue C

Abstract: During a pandemic or natural disaster, people may alter transit usage behavior due to perception of changes in the environment. To effectively respond to these crises, it is important for governments and public transit agencies to understand when these changes occurred and how they were affected by relevant policies and responsive strategies. In this study, we develop a methodological framework based on Bayesian online changepoint detection (BOCD) to identify the occurrence time, direction, and persistency of changes in individual-level transit usage. We demonstrate the effectiveness of this framework in informing government decision-making in the context of COVID-19. Using Jeju Island, South Korea as a case study, we apply the framework over a nearly two-year smart card dataset collected from the beginning of 2019 till nine months into the pandemic. By focusing on frequent transit users, we detect when these users significantly changed their transit usage frequency during the pandemic and identify several types of users who experienced different behavior change patterns. Besides demonstrating the great heterogeneity in individual-level behavior changes, we perform a regression analysis to further understand how these changes were affected by key government policies (e.g., Risk alert, Social distancing, Public transit policy, and Eased social distancing). Our results suggest that only certain sets of policies appear to have significant effects. In particular, introducing Risk alert would cause a 277% to 317% increase in the number of users who reduced transit usage frequency. Policies that eased social distancing, though, would cause a 134% to 155% increase in the number of users with travel frequency increase. The proposed BOCD framework enables a scalable solution to identifying and understanding changes of individual transit behavior. The methodology and findings are beneficial for developing targeted policies and interventions to facilitate daily travel and public transit operations during public health crises.

Keywords: Behavior change; Public transit; Smart card data; Bayesian online changepoint detection; Travel behavior; Policy making (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096585642400051X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:181:y:2024:i:c:s096585642400051x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2024.104003

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:181:y:2024:i:c:s096585642400051x