EconPapers    
Economics at your fingertips  
 

DeepAD: An integrated decision-making framework for intelligent autonomous driving

Yunyang Shi, Jinghan Liu, Chengqi Liu and Ziyuan Gu

Transportation Research Part A: Policy and Practice, 2024, vol. 183, issue C

Abstract: Autonomous vehicles have the potential to revolutionize intelligent transportation by improving traffic safety, increasing energy efficiency, and reducing congestion. In this study, a novel framework termed DeepAD was proposed and validated for decision making in intelligent autonomous driving via deep reinforcement learning. This framework incorporates multiple driving objectives such as efficiency, safety, and comfort to make informed decisions regarding autonomous vehicles (AVs). The decision-making process utilizes the origin–destination information for macrolevel routing and determines microlevel car-following and lane-changing behaviors. The lane-changing behavior is discretized and learned through a deep Q-network, and the continuous car-following behavior is learned through a deep deterministic policy gradient. Comprehensive simulation experiments on a real-world network demonstrated that DeepAD outperformed human driving while maintaining a desirable level of efficiency, safety, and comfort. In the real-world road networks experiment, multiple indexes of vehicles in the high AVs penetration rate group significantly outperformed that of the group with lower AVs penetration rate. Overall, the proposed framework provides insights into intelligent autonomous driving to improve urban mobility.

Keywords: Autonomous vehicle; Decision making; Traffic simulation; Deep reinforcement learning; Car following; Lane changing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856424001174
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:183:y:2024:i:c:s0965856424001174

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tra.2024.104069

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:183:y:2024:i:c:s0965856424001174