Analysis of car sharing operation area performance: An idle time prediction approach
Andrea Papu Carrone,
Jeppe Rich and
David Watling
Transportation Research Part A: Policy and Practice, 2024, vol. 190, issue C
Abstract:
Free-floating car sharing (FFCS) extends traditional station-based services by providing a more flexible car sharing alternative for users. However, the increased user flexibility introduces challenges from an operator perspective. To make services profitable, the total idle time of vehicles needs to be minimised and available vehicles should be located where demand exists. To increase profitability, it is important to carefully choose the operational area based on the expected idle time that different locations may offer, and only strategically expand into areas where the sustainability of the service can be maintained. In this paper, we present a hazard-based duration model for the idle times of a car sharing vehicle service. It is argued that modelling of idle time as opposed to bookings, which is the common approach, allows to circumvent the problem of latent demand and thereby presents itself as a simpler modelling strategy. In the paper, the model is applied to the city of Copenhagen, where we study the operational performance on the basis of 327,610 electric free-floating car trips in the period 2017-2018. We study the performance over 92 existing zones and predict the expected performance for an additional 28 zones by considering geographical and socio-economic drivers of demand. This enables the prediction of which areas to include as part of an expansion of the operational area, and thus serves the purpose of a strategic planning tool for growing such services. It is found that the additional zones differ substantially in their performance, which is a consequence of zones being more or less aligned with the local FFCS drivers of demand. This leads to a prioritisation of zones for further expansion based on performance, where the idle time of the best performing zones is seen to be as much as one hour less than the worst performing zones.
Keywords: Free-floating car sharing; Idle time prediction; Hazard duration models; Survival analysis; Operational area performance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856424002891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:190:y:2024:i:c:s0965856424002891
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tra.2024.104241
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().