Dynamic solution to the ground-holding problem in air traffic control
Octavio Richetta and
Amedeo R. Odoni
Transportation Research Part A: Policy and Practice, 1994, vol. 28, issue 3, 167-185
Abstract:
Existing probabilistic solutions to the ground-holding problem in air traffic control are of a static nature, with ground-holds assigned to aircraft at the beginning of daily operations. In this paper we present an optimal dynamic solution that simplifies the structure of the control mechanism by exercising ground-holding on groups of aircraft instead of individual flights. Using stochastic linear programming with recourse, we have been able to solve problem instances for one of the largest airports in the U.S. with just a powerful PC. We illustrate the advantage of the probabilistic dynamic solution over: (a) the static solution; (b) a deterministic solution; and (c) the passive strategy of no ground-holding.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0965-8564(94)90015-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:28:y:1994:i:3:p:167-185
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().