A combined traveler behavior and system performance model with advanced traveler information systems
Haitham M. Al-Deek,
Asad J. Khattak and
Paramsothy Thananjeyan
Transportation Research Part A: Policy and Practice, 1998, vol. 32, issue 7, 479-493
Abstract:
The goal of this paper is to develop a framework for evaluating the effect of Advanced Traveler Information Systems. The framework uses a composite traffic assignment model which combines a probabilistic traveler behavior model of route diversion and a queuing model to evaluate Advanced Traveler Information Systems impacts under incident conditions. The composite assignment model considers three types of travelers: those who are unequipped with electronic devices, i.e. they do not have Advanced Traveler Information Systems or radio in their vehicles; those who receive delay information from radio only; and those who access Advanced Traveler Information Systems only. The unequipped travelers are able to observe incident-induced congestion, if the congestion reaches or exceeds their decision point. The composite model assigns travelers with Advanced Traveler Information Systems to the shortest travel time route. Travelers with radio information and those who can observe the congestion are assigned according to a behavioral model calibrated on revealed preference data. Travelers who are completely unaware of the incident-induced congestion are assigned to their usual route. The unique feature of the composite model is the integration of realistic traveler behavior with system performance while accounting for the effect of real-time travel information. To demonstrate the application of the composite model, we consider the evolution of queues on a two link network with an incident bottleneck. The findings indicate that the overall system performance, measured by average travel time, improves marginally with increased market penetration of Advanced Traveler Information Systems. However, the benefits of Advanced Traveler Information Systems under incident conditions are expected to be marginal when there is more 'information' available to travelers through their own observation or radio. Specifically, delay information received through radio and from observation of incident-induced congestion induces people to divert earlier causing the network to operate closer to system optimal than user equilibrium. This limits the potential benefits of Advanced Traveler Information Systems.
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965-8564(98)00010-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:32:y:1998:i:7:p:479-493
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().