Ferry service network design: optimal fleet size, routing, and scheduling
M. F. Lai and
Hong K. Lo
Transportation Research Part A: Policy and Practice, 2004, vol. 38, issue 4, 305-328
Abstract:
The study formulated a ferry network design problem by considering the optimal fleet size, routing, and scheduling for both direct and multi-stop services. The objective function combines both the operator and passengers' performance measures. Mathematically, the model is formulated as a mixed integer multiple origin-destination network flow problem with ferry capacity constraints. To solve this problem of practical size, this study developed a heuristic algorithm that exploits the polynomial-time performance of shortest path algorithms. Two scenarios of ferry services in Hong Kong were solved to demonstrate the performance of the heuristic algorithm. The results showed that the heuristic produced solutions that were within 1.3% from the CPLEX optimal solutions. The computational time is within tens of seconds even for problem size that is beyond the capability of CPLEX.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965-8564(03)00119-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:38:y:2004:i:4:p:305-328
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().