EconPapers    
Economics at your fingertips  
 

Lifestyle classifications with and without activity-travel patterns

Hong-Zhi Lin, Hing-Po Lo and Xiao-Jian Chen

Transportation Research Part A: Policy and Practice, 2009, vol. 43, issue 6, 626-638

Abstract: Trip-based approach and activity-based approach are two extremes in the use of activity related information when developing travel demand models. Creating lifestyle clusters for a population is a compromise between the two. On the one hand, it has taken into account travel-activity patterns in the development of the clusters. On the other hand, the clusters represent homogenous groups of individuals and simple activity-based travel demand models can be developed for each cluster. However, the development of such clusters requires knowledge of activity-travel patterns of individuals, which can only be obtained from a large-scale survey. It is still an open question how to create travel/activity-related lifestyle clusters using readily available socio-demographic data (such as census data) alone. This paper attempts to answer this question by proposing a procedure of lifestyle classification that moves from specific surveys to a general population. This paper first studies issues related to the development of homogeneous clusters using socio-economic, demographic and activity-travel data. The second part of the paper addresses the issue of data insufficiency and points out that in order to use the clusters developed for travel demand estimation, it is important to know how to allocate individuals in the population to the developed clusters. As a first attempt, this paper proposes to use a recently developed technique called, Support Vector Machine (SVM), to develop classification functions that based on readily available information only. The methodologies proposed are applied to a sub-urban area in Hong Kong. Six lifestyle clusters are first produced using factor analysis and cluster analysis. SVM is then used to develop classification functions that are based on fewer variables. Results show that the two sets of lifestyle clusters are similar and that the SVM outperforms other traditional classification methods.

Keywords: Lifestyle; Activity-travel; patterns; Support; Vector; Machine; Clustering; Classification (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965-8564(09)00044-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:43:y:2009:i:6:p:626-638

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose

More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transa:v:43:y:2009:i:6:p:626-638