Modelling demand in restricted parking zones
Ángel Ibeas,
Ruben Cordera,
Luigi dell'Olio and
Jose Luis Moura
Transportation Research Part A: Policy and Practice, 2011, vol. 45, issue 6, 485-498
Abstract:
Multiple linear regression (MLR) and geographically weighted regression (GWR) models are used for estimating parking demand in areas with paid short stay parking systems. These models have been applied to the city of Santander (Cantabria, Spain) to check their goodness of fit and their predictive ability. The results show the main advantages and disadvantages of using GWR models. The technique proved to be useful in this case study because it offered a better fit and made better predictions in a scenario showing a certain degree of spatial heterogeneity unexplained by any of the variables introduced into the global model. However, the GWR model also presented situations of local correlation although this was considered moderate given the results provided by the variance inflation factors and the local condition indexes.
Keywords: Parking; demand; models; Geographically; weighted; regression; Parking; policies (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0965856411000504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transa:v:45:y:2011:i:6:p:485-498
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Transportation Research Part A: Policy and Practice is currently edited by John (J.M.) Rose
More articles in Transportation Research Part A: Policy and Practice from Elsevier
Bibliographic data for series maintained by Catherine Liu ().