Real-time demand forecasting for an urban delivery platform
Alexander Hess,
Stefan Spinler and
Matthias Winkenbach
Transportation Research Part E: Logistics and Transportation Review, 2021, vol. 145, issue C
Abstract:
Meal delivery platforms like Uber Eats shape the landscape in cities around the world. This paper addresses forecasting demand on a grid into the short-term future, enabling, for example, predictive routing applications. We propose an approach incorporating both classical forecasting and machine learning methods and adapt model evaluation and selection to typical demand: intermittent with a double-seasonal pattern. An empirical study shows that an exponential smoothing based method trained on past demand data alone achieves optimal accuracy, if at least two months are on record. With a more limited demand history, machine learning is shown to yield more accurate prediction results than classical methods.
Keywords: Demand forecasting; Intermittent demand; Machine learning; Urban delivery platform (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554520307936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:145:y:2021:i:c:s1366554520307936
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2020.102147
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().