Truck platooning in the U.S. national road network: A system-level modeling approach
Mohamadhossein Noruzoliaee,
Bo Zou and
Zhou, Yan (Joann)
Transportation Research Part E: Logistics and Transportation Review, 2021, vol. 145, issue C
Abstract:
Truck platooning enables a group of trucks to move close together, which helps reduce truck fuel use and increase effective road capacity. In this paper, a system-level equilibrium model is developed to characterize spontaneous truck platooning with coexistence of non-platooning vehicles in a network, by explicitly accounting for the interlocking relationship among platoon formation time, truck fuel saving, and increase in effective road capacity. To equilibrate the relationships, an algorithm is proposed which involves a diagonalization approach and a bush-based algorithm to solve decomposed subproblems. The condition of proportionality is imposed to obtain unique traffic flows for each class of vehicles on road links. In addition, a spatially constrained multivariate clustering technique is employed to construct origin/destination zones that are smaller than the coarse Freight Analysis Framework (FAF) zones, while maintaining reasonable computational burden for network traffic assignment. Model implementation in the U.S. shows that platooning could lead to 7.9% fuel saving among platoonable trucks in 2025 and a comparable increase in effective capacity of platoonable road links, which would account for 60% of rural interstate roads. The fuel saving and road capacity improvement translate into an annual cost reduction of $868 million for the U.S. intercity trucking sector and reduced road infrastructure investment needs worth $4.8 billion. Extensive sensitivity analysis further reveals that fuel saving of platoonable trucks increases with platoon size but decreases with inter-truck distance in a platoon. Fuel saving potential suggests that priority should be given to rural rather than urban roads in deploying platooning technologies. As expected, greater market penetration of platooning technologies means higher fuel saving and greater increase in effective road capacity.
Keywords: Truck platooning; Platoon formation time; Fuel saving; Effective road capacity; Multiclass network equilibrium; Spatially constrained multivariate clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554520308425
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:145:y:2021:i:c:s1366554520308425
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2020.102200
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().