EconPapers    
Economics at your fingertips  
 

Robust network design for sustainable-resilient reverse logistics network using big data: A case study of end-of-life vehicles

Kannan Govindan and Hadi Gholizadeh

Transportation Research Part E: Logistics and Transportation Review, 2021, vol. 149, issue C

Abstract: With new global regulations on supply chains (SCs), sustainable regulation mechanisms have become subject to controversy. The intention is to create and expand green and sustainable supply chains (SSC) to meet environmental and economic standards and to boost one’s position in competitive markets. This study examines the resilient sustainable reverse logistics network (RLN) process for end-of-life vehicles (ELVs) in Iran. We pursue both actual and uncertain situations that possess big data characteristics (3 V’s) in information between facilities of the proposed reverse logistics (RL), and we consider recycling technology due to its societal impacts. Due to unpredictable environmental and social factors, the various proposed network facilities may not utilize their full capacity, so we also consider situations in which the network facility capacity is disrupted. Our primary objective is to minimize the total cost of the resilient sustainable RLN. For most parameters, finding the best solution through traditional methods is time-consuming and costly. Hence, to enhance decision-making power, the value of model parameters in each scenario is considered. A Cross-Entropy (CE) algorithm with basic scenario concepts is used in robust model optimization. The results demonstrate that changing the scenario situation significantly impacts optimal environmental and social costs. In particular, when the situation is “pessimistic,” environmental impact costs are at their highest levels. Hence, scenario-based modeling of the network is a good approach to implement under uncertainty conditions. On the other hand, results show that cost savings for organizations are achieved through optimal planning of the centers' capacity to save cost, increase services, and ensure effective government response to cost-effective and instrumental market competition.

Keywords: Resilient sustainable reverse logistics network; Robust optimization; Cross-entropy algorithm; Big data; ELVs (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554521000545
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:149:y:2021:i:c:s1366554521000545

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2021.102279

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:149:y:2021:i:c:s1366554521000545