EconPapers    
Economics at your fingertips  
 

Credit risk prediction of SMEs in supply chain finance by fusing demographic and behavioral data

Wen Zhang, Shaoshan Yan, Jian Li, Xin Tian and Taketoshi Yoshida

Transportation Research Part E: Logistics and Transportation Review, 2022, vol. 158, issue C

Abstract: The credit risk of small and medium-sized enterprises (SMEs) in supply chain finance (SCF) is defined as the probability that the SME would default on loans derived from financing for the SCF platform. Traditional models make use of merely the static data of SMEs, such as enterprise demographic data and financial statement data, to predict the credit risk of SMEs in SCF. Nevertheless, behavioral data, which reflect the dynamic financing behavior of SMEs in SCF, are overlooked by these models, which limits the performance of credit risk prediction. To address this problem, a novel approach is proposed called DeepRisk to fuse enterprise demographic data and financing behavioral data to predict the credit risk of SMEs in SCF. We adopt the multi-modal learning strategy to fuse the two different sources of data. The concatenated vectors derived from data fusion are then used as the input of the feed forward neural network to predict the credit risk of SMEs. Experiments on a real SCF dataset demonstrate that the proposed DeepRisk approach outperforms the baseline methods in credit risk prediction in terms of precision, recall, F1-score, area under curve (AUC), and economic loss. The fusion of the two different sources of data is superior to the existing approaches to the credit risk prediction of SMEs in SCF. Both the static enterprise demographic data and the dynamic financing behavioral data are crucial to improve the credit risk prediction of SMEs. Nevertheless, the variables derived from the financing behavioral data have a better predictability than those from the enterprise demographic data. Managerial implications have been identified for decision makers involved in SCF in utilizing the benefits of SCF and in managing their credit risks.

Keywords: Supply chain finance; Credit risk prediction; DeepRisk; Multi-modal learning; Data fusion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554522000096
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:158:y:2022:i:c:s1366554522000096

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2022.102611

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:158:y:2022:i:c:s1366554522000096