A computational approach for real-time stochastic recovery of electric power networks during a disaster
Alireza Inanlouganji,
Giulia Pedrielli,
T. Agami Reddy and
Fernando Tormos Aponte
Transportation Research Part E: Logistics and Transportation Review, 2022, vol. 163, issue C
Abstract:
Disasters are occurring with increasing frequency worldwide, causing significant social hardship and economic losses. Critical infrastructures such as electric power networks are prone to failure under such events, and this significantly impacts the daily lives of people in affected areas. It is hence critical that the restoration planning of these power networks be done proactively. Disaster response in power networks is a well-studied problem, especially for pre-and post-event restoration Similar to pre-event, we consider uncertainty associated with the failure paths, and we look into real-time response while failures are happening. In this regard, at each time step, we move repair teams towards distribution loads based on their current state, their likelihood to fail, and the impact of the damage in case of node failure. We consider large-scale networks (>50 nodes and >20 repair teams) and propose an efficient algorithm to support real-time recovery.
Keywords: Disaster response; Power restoration; Reinforcement learning; Real-time decision making (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554522001430
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001430
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2022.102752
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().