EconPapers    
Economics at your fingertips  
 

Optimal intersection design and signal setting in a transportation network with mixed HVs and CAVs

Tongfei Li, Yaning Cao, Min Xu and Huijun Sun

Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 175, issue C

Abstract: It is widely recognized that human-driven vehicles (HVs) and connected and autonomous vehicles (CAVs) are expected to coexist and share the urban traffic infrastructure in the transportation network for a long time. To fully utilizes CAVs’ potential to reduce congestion in the transitional period, this study proposes and addresses the intersection design and signal setting problem in the transportation network with mixed HVs and CAVs. Due to the difference in terms of communication technology and autonomous driving technology for HVs and CAVs, three types of intersections have been proposed to amplify the efficiency-improvement benefit from CAVs by separating CAVs from HVs in a temporal or local-spatial dimension: the conventional signalized intersection, the novel signalized intersection with a dedicated CAV phase and dedicated CAV approaches, and the intelligent signal-free intersection. The problem is to determine the spatial layout of different types of intersections in the transportation network, the cycle time, and green time duration for each phase of signalized intersections that minimize the total travel cost, in which the route choice behavior of heterogeneous travelers has been respected based on the user equilibrium principle. A mixed-integer nonlinear programming model is developed to formulate the proposed intersection design and signal setting problem based on the link-node modeling method, in which the path enumeration is avoided. Then, by employing various linearization techniques (e.g., disjunctive constraints, logarithmic transformation, piecewise linearization with logarithmic-sized binary variables and constraints, outer-approximation technique), the proposed model can be further transformed into a relaxed sub-problem in the form of mixed-integer linear programming. A globally optimal solution algorithm embedding with solving a sequence of relaxed sub-problems and nonlinear mixed complementarity problems is proposed to converge to a global optimum. The results of numerical experiments illustrate that the proposed methodology can significantly improve the performance of the whole network. Moreover, it consistently outperforms the optimization model considering only conventional signalized intersections under various CAV market penetration rates.

Keywords: Connected and autonomous vehicles; Mixed traffic; Intersection design and signal setting; Signal-free intersection; Outer-approximation algorithm; Traffic planning and management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523001618
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001618

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2023.103173

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:175:y:2023:i:c:s1366554523001618