A machine learning based branch-cut-and-Benders for dock assignment and truck scheduling problem in cross-docks
Rahimeh Neamatian Monemi,
Shahin Gelareh and
Nelson Maculan
Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 178, issue C
Abstract:
In this work, we study the dock-door assignment and truck scheduling problem in cross-docks with an intraday planning horizon. This timeframe allows us to view the problem as a repeating operation with a frequency of 24 h. In practice, this repeating process follows a certain distribution, which is largely sustained even if we extend the horizon. While several modeling approaches and efficient solution algorithms have been proposed for various problem variations, the utilization of decomposition techniques in exact mathematical programming methods has been the most effective. Surprisingly, none of these techniques have taken advantage of the repeating patterns inherent in the problem. We start with a recently proposed compact model that is well-designed and can be exploited in a primal (Benders) decomposition technique, although it cannot be directly used to solve a practical-sized problem. We show that its modeling deficiencies can be fixed and propose a Benders decomposition framework together with several Alternative Objective Functions (AOFs) to generate customized Benders cuts, along with other valid inequalities that can be identified and separated. A classifier is trained to identify the most efficient AOF to use at different stages of the Benders iterations, to help avoid saturation of the master problem with dominated Benders cuts. Our extensive computational experiments confirm the significant performance improvement in the comparable decomposition framework.
Keywords: Cross-docking; MILP modeling; Benders decomposition; Classification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136655452300251X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:178:y:2023:i:c:s136655452300251x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2023.103263
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().