Estimating intercity heavy truck mobility flows using the deep gravity framework
Yitao Yang,
Bin Jia,
Xiao-Yong Yan,
Yan Chen,
Dongdong Song,
Danyue Zhi,
Yiyun Wang and
Ziyou Gao
Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 179, issue C
Abstract:
Accurate estimation of intercity heavy truck mobility flows is of vital importance to urban planning, transportation management and logistics operations. The inaccessibility of big data related to intercity transport systems and the heterogeneity of trucking activities pose challenges for the reliable estimation. Recently, the advance of Artificial Intelligence (AI) provides a potential solution to this problem. However, most previous studies focused on the estimation of inter-regional passenger mobility. In-depth studies of estimating intercity heavy truck mobility flows by using deep learning techniques are still scarce. To fill in the gaps, we construct a deep neural network based on the Deep Gravity framework, an advanced predictive model for human mobility. We collect a wide range of data related to heavy truck movements, freight locations, road networks and land uses to train the model, and validate its high performance by comparing to traditional gravity model. Furthermore, we use an explainable AI technique to interpret how the city features contribute to the determination of intercity heavy truck movements, and the results can provide valuable policy implications for logistics operations, businesses and urban planning.
Keywords: Heavy trucks; Intercity mobility; Deep gravity framework; Deep neural network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523003083
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:179:y:2023:i:c:s1366554523003083
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2023.103320
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().