A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry
Ilya Jackson and
Dmitry Ivanov
Transportation Research Part E: Logistics and Transportation Review, 2023, vol. 180, issue C
Abstract:
This research focuses on the profound impact of the shocks caused by the COVID-19 pandemic on the accuracy of AI-based demand forecasting in the beauty care industry. It aims to understand the key factors that led to decreased forecasting accuracy during the pandemic and employs causal mediation analysis to systematically investigate this complex issue. The empirical analysis is conducted using extensive order data from a major beauty care product manufacturer and distributor, covering the pre-pandemic, pandemic, and post-pandemic periods. The findings reveal that it is primarily the increase in demand volatility, and not the surge in sales volume, that has led to an increase in forecasting errors. This research provides crucial insights into the nuanced effects of macroeconomic shocks and consumer behavior changes on AI-based forecasting within the beauty care industry. Furthermore, it highlights the importance of understanding the underlying mechanisms that drive forecasting errors, paving the way for more resilient and robust demand forecasting systems in the future.
Keywords: AI; Forecasting; Pandemic; Mediation; Causal; Beauty care (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523003484
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:180:y:2023:i:c:s1366554523003484
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2023.103360
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().