EconPapers    
Economics at your fingertips  
 

Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships

Huanhuan Li, Wenbin Xing, Hang Jiao, Zaili Yang and Yan Li

Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 181, issue C

Abstract: It is critical to have accurate ship trajectory prediction for collision avoidance and intelligent traffic management of manned ships and emerging Maritime Autonomous Surface Ships (MASS). Deep learning methods for accurate prediction based on AIS data have emerged as a contemporary maritime transportation research focus. However, concerns about its accuracy and computational efficiency widely exist across both academic and industrial sectors, necessitating the discovery of new solutions. This paper aims to develop a new prediction approach called Deep Bi-Directional Information-Empowered (DBDIE) by utilising integrated multiple networks and an attention mechanism to address the above issues. The new DBDIE model extracts valuable features by fusing the Bi-directional Long Short-Term Memory (Bi-LSTM) and the Bi-directional Gated Recurrent Unit (Bi-GRU) neural networks. Additionally, the weights of the two bi-directional units are optimised using an attention mechanism, and the final prediction results are obtained through a weight self-adjustment mechanism. The effectiveness of the proposed model is verified through comprehensive comparisons with state-of-the-art deep learning methods, including Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), Bi-LSTM, Bi-GRU, Sequence to Sequence (Seq2Seq), and Transformer neural networks. The experimental results demonstrate that the new DBDIE model achieves the most satisfactory prediction outcomes than all other classical methods, providing a new solution to improving the accuracy and effectiveness of predicting ship trajectories, which becomes increasingly important in the era of the safe navigation of mixed manned ships and MASS. As a result, the findings can aid the development and implementation of proactive preventive measures to avoid collisions, enhance maritime traffic management efficiency, and ensure maritime safety.

Keywords: AIS data; Ship trajectory prediction; Maritime Autonomous Surface Ships (MASS); Integrated networks; Maritime safety (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554523003551
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003551

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2023.103367

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:181:y:2024:i:c:s1366554523003551