Recursive logit-based meta-inverse reinforcement learning for driver-preferred route planning
Pujun Zhang,
Dazhou Lei,
Shan Liu and
Hai Jiang
Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 185, issue C
Abstract:
Driver-preferred route planning often evaluates the quality of a planned route based on how closely it is followed by the driver. Despite decades of research in this area, there still exist nonnegligible deviations from planned routes. Recently, with the prevalence of GPS data, Inverse Reinforcement Learning (IRL) has attracted much interest due to its ability to directly learn routing patterns from GPS trajectories. However, existing IRL methods are limited in that: (1) They rely on numerical approximations to calculate the expected state visitation frequencies (SVFs), which are inaccurate and time-consuming; and (2) They ignore the fact that the coverage of GPS trajectories is skewed toward popular road segments, causing difficulties in learning from sparsely covered ones. To overcome these challenges, we propose a recursive logit-based meta-IRL approach, where (1) We use the recursive logit model to capture drivers’ route choice behavior so that the expected SVFs can be analytically derived, which substantially reduces the computational efforts; and (2) We introduce meta-parameters and employ meta-learning techniques so that the learning on sparsely covered road segments can benefit from that on popular ones. When training our IRL model, we update the rewards of road segments with the expected SVFs by solving several systems of linear equations and update the meta-parameters through a two-level optimization structure to ensure its fast adaption and versatility. We validate our approach using real GPS data in Chengdu, China. Results show that our planned routes better match actual routes compared with state-of-the-art methods including the recursive logit model, Deep-IRL and Dij-IRL: the F1-Score increases by 4.17% with the introduction of the recursive logit model and further increases to 5.19% after meta-learning is employed. Moreover, we can reduce training time by over 95%.
Keywords: Route planning; Inverse reinforcement learning; Meta-learning; Recursive logit (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524000759
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:185:y:2024:i:c:s1366554524000759
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103485
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().