EconPapers    
Economics at your fingertips  
 

A hybrid deep reinforcement learning approach for a proactive transshipment of fresh food in the online–offline channel system

Junhyeok Lee, Youngchul Shin and Ilkyeong Moon

Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 187, issue C

Abstract: To reduce the waste of fresh foods, one of the e-commerce companies in South Korea utilizes lateral transshipment in the network of online platforms and offline shops, which is called the online–offline channel system (OOCS). Even though the OOCS has achieved success in real practice, there is room for further study on this system with regard to deriving a transshipment policy. For this reason, this study aims to develop a solution approach that could derive a promising policy and analyze the impacts of transshipment in the OOCS. The main contributions are summarized as follows. First, we propose a model to deal with the proactive transshipment of perishable products in the OOCS. In particular, this is the first study that introduces the concept of the heterogeneous shelf life considering different properties of online and offline channels. Second, we develop the hybrid deep reinforcement learning (DRL) approach by combining the soft actor–critic algorithm with two novel acceleration methods. The developed method could obtain a promising policy without assumptions about demand distribution and mitigate computational burdens by reducing action spaces. On a set of experiments carried out on real-world demand data, the transshipment policy derived from the hybrid DRL approach could obtain the best profit compared to existing algorithms. Third, we examine the impacts of transshipment by differing types of demand and varying the unit transshipment cost parameter. We find that transshipment substantially reduces the outdating cost by allowing the offline channel to make good use of the old products that will be discarded in the online channel, which is new to the literature.

Keywords: Perishable inventory management; Proactive transshipment; Online–offline channel system; Deep reinforcement learning; Soft actor–critic (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524001674
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:187:y:2024:i:c:s1366554524001674

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2024.103576

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:187:y:2024:i:c:s1366554524001674