Tackling the crowdsourced shared-trip delivery problem at scale with a novel decomposition heuristic
Dingtong Yang,
Michael F. Hyland and
R. Jayakrishnan
Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 188, issue C
Abstract:
This paper presents a set-partitioning formulation and a novel decomposition heuristic (D-H) solution algorithm to solve large-scale instances of the urban crowdsourced shared-trip delivery (CSD) problem. The CSD problem involves dedicated vehicles (DVs) and shared personal vehicles (SPVs) fulfilling delivery orders, wherein the SPVs have their own trip origins and destinations. The D-H begins by assigning as many package delivery orders (PDOs) to SPVs as possible, where the D-H enumerates the set of routes each SPV can feasibly traverse and then solves a PDO-SPV-route assignment problem. For PDO-DV assignment and DV routing, the D-H solves a multi-vehicle routing problem with time-window, tour duration, and capacity constraints using an insertion heuristic. Finally, the D-H seeks potential solution improvements by switching PDOs between SPV and DV routes through a simulated annealing (SA)-inspired procedure. The D-H outperforms a commercial solver in terms of computational efficiency while obtaining near-optimal solutions for small problem instances. The SA-inspired switching procedure outperforms a large neighborhood search algorithm regarding run time, and the two are comparable regarding solution quality. Finally, the paper uses the D-H to analyze the impact of several relevant factors on city-scale CSD system performance, namely the number of participating SPVs and the maximum willingness to detour of SPVs. Consistent with the existing literature, we find that CSD can substantially reduce delivery costs. However, we find that CSD can increase vehicle miles traveled. Our findings provide meaningful insights for logistics practitioners, while the algorithms illustrate promise for large real-world systems.
Keywords: Crowd-Shipping; Sharing Economy; Open Vehicle Routing Problem; Heterogenous Vehicles; Last-Mile Delivery; Simulated Annealing (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524002242
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:188:y:2024:i:c:s1366554524002242
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103633
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().