EconPapers    
Economics at your fingertips  
 

Energy harvesting for automated storage and retrieval system with sustainable configuration of storage assignment and input/output point

Zakka Ugih Rizqi, Shuo-Yan Chou and Adinda Khairunisa

Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 192, issue C

Abstract: The warehouse automation market has experienced significant growth due to the necessity for quick responses to customer needs. The adoption of Automated Storage and Retrieval System (AS/RS) aims to enhance operational efficiency and expedite order fulfillment, although environmental considerations are frequently overlooked. This study introduces the implementation of energy harvesting using Regenerative Braking System (RBS) on AS/RS to minimize the carbon emission impact. The best configuration of storage assignments and Input/Output (I/O) points is examined to improve travel time, response time, and carbon emission as sustainability indicators. This study employs a discrete-event simulation mimicking the AS/RS and warehouse environment under uncertainty. Simulation-based experiment was performed under 96 different scenarios and the result was assessed through statistical tests revealing the main and interaction effects between factors to performance indicators, including the trade-off between them. The result reveals that the implementation of RBS in AS/RS can result in 13% energy saving on average or equal to additional travel range of 28,800 m indicating the suitability adoption towards green operation. However, the lowest carbon emission is followed by higher travel time and response time. Thus, metamodel-based optimization was also performed via desirability function analysis. The optimization result reveals that the sustainable AS/RS configuration is obtained with a single-side for I/O point, non-class for storage classification, closest open location with column-order for slot selection, and closest open location with row-order for retrieval selection.

Keywords: AS/RS; Energy Harvesting; Regenerative Braking; Storage Assignment; Sustainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524003727
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003727

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2024.103781

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-25
Handle: RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003727