Dynamic collaborative truck-drone delivery with en-route synchronization and random requests
Haipeng Cui,
Keyu Li,
Shuai Jia and
Qiang Meng
Transportation Research Part E: Logistics and Transportation Review, 2024, vol. 192, issue C
Abstract:
Coordinated truck and drone delivery is gaining popularity in logistics as it can greatly reduce operation costs. However, existing studies on related operations management problems typically ignore the following important features: (i) the random appearance of requests, which require operators to dynamically respond to the requests; and (ii) the decisions of optimal launch and retrieval locations for trucks and drones instead of fixed to customer locations, which can significantly impact the overall time costs. To tackle these challenges, this study investigates the dynamic collaborative truck-drone routing problem with randomly arriving requests and synchronization on routes. We model the problem as a Markov Decision Process (MDP) and solve the MDP via a reinforcement learning (RL) approach. The proposed RL approach determines: (i) whether each request should be serviced upon arrival, (ii) which truck or drone should be assigned for the request, and (iii) the optimal en-route take-off and landing positions for paired trucks and drones. We further employ a framework of decentralized learning and centralized dispatching in RL to increase performance. Numerical experiments are conducted to assess the proposed solution approach on instances generated based on both the Solomon dataset and real-world operational data of a logistics operator in Singapore over several benchmark algorithms under various battery endurance levels of drones and distinct transportation scenarios including node-based dynamic collaborative truck-drone routing problem, dynamic non-collaborative truck and drone routing problem, and dynamic vehicle routing problem. The results show that our RL solution outperforms the benchmark algorithm in total profit by an average of 28.03 %, and our en-route takeoff and landing scenario outperforms the benchmark scenarios in total profit by an average of 8.43 % in multi-day instances. Additionally, compared to the traditional node-based landing scenario, employing our en-route takeoff and landing strategy can save 0.9 h/(drone*day) of waiting time on average.
Keywords: Dynamic truck-drone delivery; Flexible launch and retrieval; Random requests; Reinforcement learning; Mixed integer programming (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524003934
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:192:y:2024:i:c:s1366554524003934
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103802
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().