EconPapers    
Economics at your fingertips  
 

A multi-objective reinforcement learning-based velocity optimization approach for electric trucks considering battery degradation mitigation

Ruo Jia, Kun Gao, Shaohua Cui, Jing Chen and Jelena Andric

Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 194, issue C

Abstract: Electrification of commercial vehicles for more sustainable logistic systems has been promoted in the past decades. This study proposes a deep reinforcement learning method for velocity optimization and battery degradation minimization during operation for battery-powered electric trucks (BETs), aiming to achieve a safe, efficient, and comfortable driving control policy for BETs. To obtain an optimal solution considering both calendar and cyclic battery degradation, Deep Deterministic Policy Gradient and Twin Delayed Deep Deterministic Policy Gradient (TD3) approaches are integrated within a simulation environment. To optimize overall BET velocity performance, a trade-off among safety, efficiency, comfort, and battery degradation is incorporated into the reward function of reinforcement learning using Mixture of Experts (MoE) model. The results indicate that the proposed TD3-MoE model achieves safe, efficient, and comfortable car-following control while optimizing total battery degradation. Specifically, the model achieves reductions in total battery capacity loss ranging from 2.4% to 8.3% at different states of charge (SoC) of battery compared to human-driven scenarios. Moreover, despite calendar battery degradation being inevitable, the cyclic battery degradation is effectively mitigated by 27.7% to 29.6% compared to the same SoCs in human-driving data. Furthermore, the TD3-MoE model achieves significant energy consumption reductions, ranging from 35.3% to 39.8% compared to real car-following trajectories.

Keywords: Battery-powered electric truck; Sustainable logistics; Velocity optimization; Deep reinforcement learning; Battery degradation mitigation (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524004769
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004769

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2024.103885

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:transe:v:194:y:2025:i:c:s1366554524004769