Unlocking Real-Time Decision-Making in Warehouses: A machine learning-based forecasting and alerting system for cycle time prediction
Davide Aloini,
Elisabetta Benevento,
Riccardo Dulmin,
Emanuele Guerrazzi and
Valeria Mininno
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 194, issue C
Abstract:
In highly automated warehouses characterized by unpredictable demand, timely decision-making is critical to maintaining operational efficiency. This study proposes a forecasting and alerting system for real-time warehouse management. The system utilizes a Machine Learning (ML)-based predictive model to forecast picking order tardiness using Warehouse Management System data, complemented by a real-time alerting mechanism to support operators in in making informed short-term decisions. A case study conducted in a Shuttle-Based Storage and Retrieval Systems (SBS/RS) of a tire distribution company validates the system’s effectiveness. Particularly, several ML techniques were tested to find the best forecasting model, leveraging a set of predictors tailored to the characteristics of the warehouse. Simulation with real data demonstrates significant reductions of peak cycle times and in total cycle time.
Keywords: Artificial Intelligence; Decision-making; Supply Chain Management; Machine Learning; Automated warehouse; Real-time prediction (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524005246
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:194:y:2025:i:c:s1366554524005246
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103933
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().