A fuzzy programming model for decentralization and drone utilization in urban humanitarian relief chains
Amirali Amirsahami,
Farnaz Barzinpour and
Mir Saman Pishvaee
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 195, issue C
Abstract:
The urgent need for rapid disaster response mechanisms, particularlyin the event ofearthquakes, is critical. In response to directives from the National Crisis Management Supreme Council, a plan has been initiated to establish distribution centers across all zones of Tehran, Iran,which signalsa significant shift towards decentralization. However, land scarcity and road blockages hinder thefull realization ofa decentralized structure in certain zones. To address these challenges, two strategies have been proposed: facility expansion and drone-aided delivery. The integration of these strategies has led to the development of a novel structure, the hybrid decentralized humanitarian relief chain with simultaneous utilization of trucks and drones (HDHRC-TD). Mathematical optimization techniques are employed to model the distribution of relief items during the pre-disaster preparedness stage, especially in the critical first hours following an earthquake. The system is treated as a two-echelon network. Additionally, to account for the negative impact of uncertainty in road network connectivity, truck travel time is modeled as an uncertain parameter. A novel simulation-based bi-objective fuzzy chance-constrained programming (SBFCCP) model is introduced to manage this uncertainty.To ensure the model can be solved within a reasonable time frame, a hybrid metaheuristic algorithm, the modified NSGA-II with adaptive VNS algorithm (M−NSGA−II−AVNS), is employed. The facility expansion strategy reduces establishment costs to 25% of those of a fully decentralized system, while achieving 77% of its response time reduction. The drone-aided delivery strategy further enhances disaster response by improving access to more roads, significantly reducing total waiting times. Moreover, validation of the proposed model confirms its accuracy in managing uncertainty, further supporting the cost-effectiveness and resiliency of the proposed structure for urban disaster response.
Keywords: Humanitarian logistics; Drones; Optimization; Fleet management; Facility allocation; Road network connectivity (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554524005404
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:195:y:2025:i:c:s1366554524005404
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2024.103949
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().