Enhancing feeder bus service coverage with Multi-Agent Reinforcement Learning: A case study in Hong Kong
Yang Su and
Hai Yang
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 196, issue C
Abstract:
Public transport is a vital component of modern urban mobility, playing a significant role in reducing congestion and promoting environmental sustainability. Feeder bus services are essential for connecting residents to major public transport hubs, such as metro or rail stations. In this paper, a novel framework that enhances service coverage of the feeder bus while maintaining network efficiency is proposed. The framework integrates Multi-Agent Reinforcement Learning (MARL) to simulate and optimize route designs and frequency settings. Additionally, we introduce a Cost-based Competitive Coverage (CCC) Model to evaluate the performance of the feeder bus services by considering competition with other public transport modes. A case study conducted in two new towns in Hong Kong demonstrates the effectiveness and robustness of the proposed framework, highlighting its adaptability and potential to improve public transport accessibility.
Keywords: Transit Route Network Design Problem; Multi-Agent Reinforcement Learning (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554525000389
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:196:y:2025:i:c:s1366554525000389
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2025.103997
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().