EconPapers    
Economics at your fingertips  
 

Data-driven predictive model for dynamic expected travel time estimation in rail freight networks: A case study

Suraj Kumar, Ayush Sharma and Gaurav Kumar

Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 200, issue C

Abstract: Rail freight is vital for economic growth due to its efficiency and environmental benefits, but its lack of fixed schedules due to various delay factors poses challenges for accurate Expected Travel Time (ETT) predictions. This research addresses the need for real-time, accurate and dynamic ETT predictions crucial for maintaining efficient supply chains by developing a novel predictive model that leverages real-time data. The model ensembles Graph Convolutional Network-Long Short-Term Memory (GCN-LSTM) and Kalman Filters (KF) models to capture the complex spatiotemporal interactions and diverse traction behaviours within the freight train railway network. The methodology comprises three phases: modeling, schedule generation, and dynamic updating. In the modeling phase, historical train movement data is used to develop predictive models, with KF handling state-space representation and GCN-LSTM capturing spatial and temporal dependencies. These models are ensembled to enhance prediction accuracy. The schedule generation phase estimates travel times using the ensembled model, the dynamic updating phase refines predictions using real-time data, while congestion is assessed by clustering congested areas with Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and propagating these clusters through KF. The proposed model is compared with different state-of-art predictive models. The methodology’s effectiveness was validated using real-world data from Indian Railway freight operations. The proposed model demonstrated superior accuracy, with Mean Absolute Percentage Error of 19.51%, while the moving average-based model which was previously being used by the Indian Railway had an error of 44.34%. This approach, implemented as a decision support system for Indian Railways’ daily operations, provides advanced planning solutions to manage the growing complexities of rail freight logistics effectively.

Keywords: Freight Trains; Travel-time estimation; Graph neural networks; Kalman Filter; Ensemble model; LSTM; Congestion (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S136655452500242X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:200:y:2025:i:c:s136655452500242x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic

DOI: 10.1016/j.tre.2025.104201

Access Statistics for this article

Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley

More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:transe:v:200:y:2025:i:c:s136655452500242x