A data-driven approach for spatio-temporal causal analysis in large-scale urban traffic networks
Pingping Dong,
Xiaoning Zhang and
Xiaoge Zhang
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 202, issue C
Abstract:
Understanding causal relationships between traffic states throughout the system is of great significance for enhancing traffic management and optimization in urban traffic networks. Unfortunately, few studies in the literature have systematically analyzed causal structure characterizing the evolution of traffic states over time and gauged the importance of traffic nodes from a causal perspective, particularly in the context of large-scale traffic networks. Moreover, the dynamic nature of traffic patterns necessitates a robust method to reliably discover causal relationships, which are often overlooked in existing studies. To address these issues, we propose a Spatio-Temporal Causal Structure Learning and Analysis (STCSLA) framework for analyzing large-scale urban traffic networks at a mesoscopic level from a causal lens. The proposed framework comprises three main components: decomposition of spatio-temporal traffic data into localized traffic subprocesses; a Bayesian Information Criterion-guided spatio-temporal causal structure learning combined with temporal-dependencies preserving sampling for deriving reliable causal graph to uncover time-lagged and contemporaneous causal effects; establishing several causality-oriented indicators to identify causally critical nodes, mediator nodes, and bottleneck nodes in traffic networks. Experimental results on both a synthetic dataset and the real-world Hong Kong traffic dataset demonstrate that the proposed STCSLA framework accurately uncovers time-varying causal relationships and identifies key nodes that play various causal roles in influencing traffic dynamics. These findings underscore the potential of the proposed framework to improve traffic management and provide a comprehensive causality-driven approach for analyzing urban traffic networks.
Keywords: Spatio-temporal data modeling; Traffic network; Causal discovery; Causal effect (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554525002856
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:202:y:2025:i:c:s1366554525002856
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2025.104244
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().