Boosting column generation with graph neural networks for joint rider trip planning and crew shift scheduling
Jiawei Lu,
Tinghan Ye,
Wenbo Chen and
Pascal Van Hentenryck
Transportation Research Part E: Logistics and Transportation Review, 2025, vol. 202, issue C
Abstract:
Optimizing service schedules is pivotal to the reliable, efficient, and inclusive on-demand mobility. This pressing challenge is further exacerbated by the increasing needs of an aging population, the oversubscription of existing services, and the lack of effective solution methods. This study addresses the intricacies of service scheduling, by jointly optimizing rider trip planning and crew scheduling for a complex dynamic mobility service. The resulting optimization problems are extremely challenging computationally for state-of-the-art methods.
Keywords: Service scheduling; Paratransit; Column generation; Graph neural network (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554525003229
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:202:y:2025:i:c:s1366554525003229
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2025.104281
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().