Hybrid approaches based on SARIMA and artificial neural networks for inspection time series forecasting
J.J. Ruiz-Aguilar,
I.J. Turias and
M.J. Jiménez-Come
Transportation Research Part E: Logistics and Transportation Review, 2014, vol. 67, issue C, 1-13
Abstract:
In this paper, the number of goods subject to inspection at European Border Inspections Post are predicted using a hybrid two-step procedure. A hybridization methodology based on integrating the data obtained from autoregressive integrated moving averages (SARIMA) model in the artificial neural network model (ANN) to predict the number of inspections is proposed. Several hybrid approaches are compared and the results indicate that the hybrid models outperform either of the models used separately. This methodology may become a powerful decision-making tool at other inspection facilities of international seaports or airports.
Keywords: Inspection forecasting; Artificial neural networks; SARIMA; Hybrid models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S1366554514000428
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:transe:v:67:y:2014:i:c:p:1-13
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/bibliographic
http://www.elsevier. ... 600244/bibliographic
DOI: 10.1016/j.tre.2014.03.009
Access Statistics for this article
Transportation Research Part E: Logistics and Transportation Review is currently edited by W. Talley
More articles in Transportation Research Part E: Logistics and Transportation Review from Elsevier
Bibliographic data for series maintained by Catherine Liu ().