Characterizing favored users of incentive-based traffic demand management program
Ye Tian,
Yudi Li,
Jian Sun and
Jianhong Ye
Transport Policy, 2021, vol. 105, issue C, 94-102
Abstract:
Incentive-Based Traffic Demand Management (IBTDM) provides monetary incentives to encourage commuters to alter their departures spatially or temporary with the goal of alleviating congestion. With the proliferation of smartphone technology, mobility apps have become ideal platforms for carrying out IBTDM. Tremendous amounts of empirical app usage data have been collected, but research into the behavioral insights of IBTDM remains limited. It is unclear who IBTDM's target users should be, and which users are the most likely to be stable (actively use the app) and behaviorally sustainable (willing to contribute to congestion alleviation). This study aims to profile the socio-demographics of such favored users based on behavioral and socio-demographic data collected by the Metropia app. The Ensemble Empirical Mode Decomposition (EEMD) method was used for usage trend detection. The detected usage trends were then used in pattern classification to identify stable and sustainable users. Next, binary logistic regression was adopted to explore the socio-demographic characteristics of each category of users. It was found that factors including home work days, household annual income, household size and schedule flexibility played important roles in users' usage patterns and departure time decisions. Specifically, home work days and household annual income co-influenced app usage patterns. Household size and schedule flexibility were the main determinants of departure time behavior. The findings of this research can be used to guide administrators of budget-constrained IBTDM programs who need to wisely allocate their marketing budget to increase penetration among favored users as to maximize the utility of the program.
Keywords: Incentives; Rewards; Traffic demand management; Departure time choice; Ensemble empirical mode decomposition (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0967070X21000639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:trapol:v:105:y:2021:i:c:p:94-102
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tranpol.2021.03.003
Access Statistics for this article
Transport Policy is currently edited by Y. Hayashi
More articles in Transport Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().