Linking short- and long-term impacts of the COVID-19 pandemic on travel behavior and travel preferences in Alabama: A machine learning-supported path analysis
Ningzhe Xu,
Qifan Nie,
Jun Liu and
Steven Jones
Transport Policy, 2024, vol. 151, issue C, 46-62
Abstract:
This study examines the impacts of the COVID-19 pandemic on short-term travel behavior and long-term travel preferences among residents of Alabama, using survey data. The study employs a two-step path analysis modeling framework to connect the changes in travel behavior during the pandemic with the expected long-term travel preferences. In the first step, the study develops a model to identify correlates of the travel behavior changes during the pandemic (i.e., reduced trip frequency to grocery/pharmacy, retail/recreation, and work/commuting). In the second step, the study develops a model to establish the association between during-pandemic travel behavior changes and post-pandemic travel preferences. To reduce estimation bias when relying on one single model, the study employs multiple machine learning classifiers such as Random Forest, Adaptive Boosting, Support Vector Machine, K-Nearest Neighbors, and Artificial Neural Network. Average marginal effects are estimated to quantify the correlates of travel impacts due to the pandemic. The results reveal that fear of COVID-19 is significantly associated with reduced travel during the pandemic regardless of the trip type, and people from high-income households will likely travel less after the pandemic. The path analysis connects the correlates of short-term travel impacts of COVID-19 and long-term travel preferences, and identifies variables such as fear of COVID-19 that are significantly linked to reduced travel during the pandemic and also associated with long-term travel preferences. People who reduced their travel during the pandemic are likely to continue traveling less in the future. The study provides valuable insights into the impacts of COVID-19 on travel behavior in Alabama, which can inform the development of local transportation policies.
Keywords: COVID-19 pandemic; Travel behavior; Path analysis; Machine learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0967070X24000994
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:trapol:v:151:y:2024:i:c:p:46-62
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.tranpol.2024.04.002
Access Statistics for this article
Transport Policy is currently edited by Y. Hayashi
More articles in Transport Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().