EconPapers    
Economics at your fingertips  
 

Sharing, collaborating, and benchmarking to advance travel demand research: A demonstration of short-term ridership prediction

Juan D. Caicedo, Carlos Guirado, Marta C. González and Joan L. Walker

Transport Policy, 2025, vol. 171, issue C, 531-541

Abstract: This research foregrounds general practices in travel demand research, emphasizing the need to change our ways. A critical barrier preventing travel demand literature from effectively informing policy is the volume of publications without clear, consolidated benchmarks, making it difficult for researchers and policymakers to gather insights and use models to guide decision-making. By emphasizing reproducibility and open collaboration, we aim to enhance the reliability and policy relevance of travel demand research. We demonstrate this approach in the field of short-term ridership prediction. Drawing insights from over 300 studies, we develop an open-source codebase implementing five common models and propose a standardized benchmark dataset from Bogotá’s transit system, which we use to evaluate these models across stable and disruptive conditions. Our evaluation shows that online training significantly improves the prediction accuracy under demand fluctuations, with the multi-output, online-training LSTM model performing best across stable and disrupted conditions. However, even this model required approximately 1.5 months for error stabilization during the COVID-19 pandemic. The aim of this open-source codebase is to lower the barrier for other researchers to replicate models and build upon findings. We encourage researchers to test their modeling approaches on this benchmarking platform using the proposed dataset or their own, challenge our analyses, and develop model specifications that can outperform those evaluated here. Further, collaborative research approaches must be expanded across travel demand modeling if we wish to impact policy and planning.

Keywords: Short-term ridership prediction; Open-source benchmarking; Transit data sharing; Travel demand research (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0967070X25002343
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:trapol:v:171:y:2025:i:c:p:531-541

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tranpol.2025.06.009

Access Statistics for this article

Transport Policy is currently edited by Y. Hayashi

More articles in Transport Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-08-29
Handle: RePEc:eee:trapol:v:171:y:2025:i:c:p:531-541