EconPapers    
Economics at your fingertips  
 

The role of critical incidents and involvement in transit satisfaction and loyalty

Jaime Allen, Laura Eboli, Carmen Forciniti, Gabriella Mazzulla and Juan de Dios Ortúzar

Transport Policy, 2019, vol. 75, issue C, 57-69

Abstract: We analyse the relationship between transit passengers' satisfaction and loyalty. Understanding passengers' behavioural intentions after experiencing a service is an essential task for transit managers. We use structural equation models (SEM) to explore the relationship among various satisfaction latent constructs. In particular, we introduce Loyalty, which represents the intent to recommend the service. We also introduce the concept of Critical Incidents (CI), i.e. closure of a transit line in the last three months (planned) or a service anomaly in the past month (unplanned), and hypothesise that CI negatively affects any attribute-specific satisfaction construct. We additionally model the concept of Involvement, measured as the intent to participate in future public transport (PT) marketing studies, and hypothesise that both Overall Satisfaction and Loyalty may affect this variable. Finally, we conduct an SEM Multi-Group Analysis (SEM-MGA), with the objective to determine whether heterogeneity is present in passengers' satisfaction models, by incorporating users’ travel and demographic characteristics (i.e. gender, age, nationality, time of day, travel frequency, and trip purpose). Our findings show that CI significantly impact all attribute-specific satisfaction constructs, specially the unplanned events during the last month. We also find that Loyalty is influenced by Overall Satisfaction and also by specific satisfaction constructs. By comparing various SEM models, we find that service satisfaction constructs, such as speed and waiting time at the platform, are the most relevant towards Overall Satisfaction. The SEM-MGA serves as a tool to test for heterogeneity in the satisfaction models within user groups. We find differences in time of day, age, and travel frequency. Finally, we consider that the Involvement relationship needs further research. Our framework allows for more detailed policy-making in PT systems regarding heterogeneous subpopulations and more concrete policy variables, such as Critical Incidents.

Keywords: Public transport; Service quality; Loyalty; Critical incident; Involvement; SEM multigroup analysis (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0967070X18304384
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:trapol:v:75:y:2019:i:c:p:57-69

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.tranpol.2019.01.005

Access Statistics for this article

Transport Policy is currently edited by Y. Hayashi

More articles in Transport Policy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:trapol:v:75:y:2019:i:c:p:57-69