Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming
Rafaela Flach,
Gabriel Abrahão,
Benjamin Bryant,
Marluce Scarabello,
Aline C. Soterroni,
Fernando M. Ramos,
Hugo Valin,
Michael Obersteiner and
Avery S. Cohn
World Development, 2021, vol. 146, issue C
Abstract:
In tropical regions, widespread loss of native forest and savanna vegetation is increasing extreme heat, particularly in agricultural regions. Using the case of rising extreme heat from lost forest and savanna vegetation in Brazilian Amazon and Cerrado regions, we modeled losses to soy production, the region’s principal economic activity. We assessed two types of extreme-heat regulation values: the value of avoided extreme-heat exposure of soy from the conservation of neighboring ecosystems and the value of lost revenue due to increased extreme heat exposure from increased ecosystem conversion. Our modeling combines empirical estimates of (1) the influence of ecosystem conversion on extreme heat over neighboring cropland, (2) the impacts of extreme heat on agricultural yields, and (3) native vegetation area, agricultural area, and crop prices. We examine lost soy value from land conversion over the period 1985 to 2012, potential losses from further conversion under plausible land and climate change scenarios (2020–2050), and the future value of conservation of the region’s remaining ecosystem area near soy. Soy revenue lost due to extreme heat from native vegetation loss (1985–2012) totaled 99 (2005USD) ha−1 for 2012-2013 growing season. By 2050, agricultural growth, ecosystem conversion, and climate change could boost extreme-heat regulation values by 25% to 95%. Future values were strongly sensitive to changes in agricultural density, rates of native vegetation loss, and climate. Extreme-heat regulation values were largest in the Cerrado biome and the southeastern Amazon. Relative to land values, the value of extreme heat regulation was largest relative to the carbon value of biomass in the Cerrado. By regulating the exposure of agriculture to extreme heat, ecosystem conservation can create considerable value for the soy sector.
Keywords: Ecosystem services; Soy economy; Extreme heat; Climate change; Conservation; Amazon; Agriculture (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0305750X21001972
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:wdevel:v:146:y:2021:i:c:s0305750x21001972
DOI: 10.1016/j.worlddev.2021.105582
Access Statistics for this article
World Development is currently edited by O. T. Coomes
More articles in World Development from Elsevier
Bibliographic data for series maintained by Catherine Liu ().