EconPapers    
Economics at your fingertips  
 

Systematic process for crop insurance development: area-yield rice insurance with machine learning technology implementation in Thailand

Krish Sethanand, Thitivadee Chaiyawat and Chupun Gowanit

Agricultural Finance Review, 2023, vol. 83, issue 3, 416-436

Abstract: Purpose - This paper presents the systematic process framework to develop the suitable crop insurance for each agriculture farming region which has individual differences of associated crop, climate condition, including applicable technology to be implemented in crop insurance practice. This paper also studies the adoption of new insurance scheme to assess the willingness to join crop insurance program. Design/methodology/approach - Crop insurance development has been performed through IDDI conceptual framework to illustrate the specific crop insurance diagram. Area-yield insurance as a type of index-based insurance advantages on reducing basis risk, adverse selection and moral hazard. This paper therefore aims to develop area-yield crop insurance, at a provincial level, focusing on rice insurance scheme for the protection of flood. The diagram demonstrates the structure of area-yield rice insurance associates with selected machine learning algorithm to evaluate indemnity payment and premium assessment applicable for Jasmine 105 rice farming in Ubon Ratchathani province. Technology acceptance model (TAM) is used for new insurance adoption testing. Findings - The framework produces the visibly informative structure of crop insurance. Random Forest is the algorithm that gives high accuracy for specific collected data for rice farming in Ubon Ratchathani province to evaluate the rice production to calculate an indemnity payment. TAM shows that the level of adoption is high. Originality/value - This paper originates the framework to generate the viable crop insurance that suitable to individual farming and contributes the idea of technology implementation in the new service of crop insurance scheme.

Keywords: Crop insurance; Area yield; Machine learning; Insurance product development process (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:afrpps:afr-09-2022-0115

DOI: 10.1108/AFR-09-2022-0115

Access Statistics for this article

Agricultural Finance Review is currently edited by Valentina Hartarska and Denis Nadolnyak

More articles in Agricultural Finance Review from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:afrpps:afr-09-2022-0115