A spatial Bayesian approach to weather derivatives
Nicholas Paulson,
Chad Hart and
Dermot Hayes
Agricultural Finance Review, 2010, vol. 70, issue 1, 79-96
Abstract:
Purpose - While the demand for weather‐based agricultural insurance in developed regions is limited, there exists significant potential for the use of weather indexes in developing areas. The purpose of this paper is to address the issue of historical data availability in designing actuarially sound weather‐based instruments. Design/methodology/approach - A Bayesian rainfall model utilizing spatial kriging and Markov chain Monte Carlo techniques is proposed to estimate rainfall histories from observed historical data. An example drought insurance policy is presented where the fair rates are calculated using Monte Carlo methods and a historical analysis is carried out to assess potential policy performance. Findings - The applicability of the estimation method is validated using a rich data set from Iowa. Results from the historical analysis indicate that the systemic nature of weather risk can vary greatly over time, even in the relatively homogenous region of Iowa. Originality/value - The paper shows that while the kriging method may be more complex than competing models, it also provides a richer set of results. Furthermore, while the application is specific to forage production in Iowa, the rainfall model could be generalized to other regions by incorporating additional climatic factors.
Keywords: Agriculture; Insurance; Rainfall; Modelling; Climatic loading; United States of America (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
Working Paper: A Spatial Bayesian Approach to Weather Derivatives (2010)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:afrpps:v:70:y:2010:i:1:p:79-96
DOI: 10.1108/00021461011042657
Access Statistics for this article
Agricultural Finance Review is currently edited by Valentina Hartarska and Denis Nadolnyak
More articles in Agricultural Finance Review from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().