A novel granular decomposition based predictive modeling framework for cryptocurrencies' prices forecasting
Indranil Ghosh,
Rabin K. Jana and
Dinesh K. Sharma
China Finance Review International, 2024, vol. 14, issue 4, 759-790
Abstract:
Purpose - Owing to highly volatile and chaotic external events, predicting future movements of cryptocurrencies is a challenging task. This paper advances a granular hybrid predictive modeling framework for predicting the future figures of Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Stellar (XLM) and Tether (USDT) during normal and pandemic regimes. Design/methodology/approach - Initially, the major temporal characteristics of the price series are examined. In the second stage, ensemble empirical mode decomposition (EEMD) and maximal overlap discrete wavelet transformation (MODWT) are used to decompose the original time series into two distinct sets of granular subseries. In the third stage, long- and short-term memory network (LSTM) and extreme gradient boosting (XGB) are applied to the decomposed subseries to estimate the initial forecasts. Lastly, sequential quadratic programming (SQP) is used to fetch the forecast by combining the initial forecasts. Findings - Rigorous performance assessment and the outcome of the Diebold-Mariano’s pairwise statistical test demonstrate the efficacy of the suggested predictive framework. The framework yields commendable predictive performance during the COVID-19 pandemic timeline explicitly as well. Future trends of BTC and ETH are found to be relatively easier to predict, while USDT is relatively difficult to predict. Originality/value - The robustness of the proposed framework can be leveraged for practical trading and managing investment in crypto market. Empirical properties of the temporal dynamics of chosen cryptocurrencies provide deeper insights.
Keywords: Analytics; Forecasting; Cryptocurrency; Long and short-term memory network; Sequential quadratic programming (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:cfripp:cfri-03-2023-0072
DOI: 10.1108/CFRI-03-2023-0072
Access Statistics for this article
China Finance Review International is currently edited by Professor Chongfeng Wu and Professor Haitao Li
More articles in China Finance Review International from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().