The dependence structure in volatility between Shanghai and Shenzhen stock market in China
Mingyuan Guo and
Xu Wang
China Finance Review International, 2016, vol. 6, issue 3, 264-283
Abstract:
Purpose - – The purpose of this paper is to analyse the dependence structure in volatility between Shanghai and Shenzhen stock market in China based on high-frequency data. Design/methodology/approach - – Using a multiplicative error model (hereinafter MEM) to describe the margins in volatility of China’s Shanghai and Shenzhen stock market, this study adopts static and time-varying copulas, respectively, estimated by maximum likelihood estimation method to describe the dependence structure in volatility between Shanghai and Shenzhen stock market in China. Findings - – This paper has identified the asymmetrical dependence structure in financial market volatility more precisely. Gumbel copula could best fit the empirical distribution as it can capture the relatively high dependence degree in the upper tail part corresponding to the period of volatile price fluctuation in both static and dynamic view. Originality/value - – Previous scholars mostly use GARCH model to describe the margins for price volatility. As MEM can efficiently characterize the volatility estimators, this paper uses MEM to model the margins for the market volatility directly based on high-frequency data, and proposes a proper distribution for the innovation in the marginal models. Then we could use copula-MEM other than copula-GARCH model to study on the dependence structure in volatility between Shanghai and Shenzhen stock market in China from a microstructural perspective.
Keywords: Dependence; Copula; High-frequency data; Multiplicative error model; Realized volatility (search for similar items in EconPapers)
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:cfripp:v:6:y:2016:i:3:p:264-283
DOI: 10.1108/CFRI-09-2015-0122
Access Statistics for this article
China Finance Review International is currently edited by Professor Chongfeng Wu and Professor Haitao Li
More articles in China Finance Review International from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().