Hierarchical clinical decision support for breast cancer care empowered with Bayesian networks
Omran Alomran,
Robin Qiu and
Hui Yang
Digital Transformation and Society, 2023, vol. 2, issue 2, 163-178
Abstract:
Purpose - Breast cancer is a global public health dilemma and the most prevalent cancer in the world. Effective treatment plans improve patient survival rates and well-being. The five-year survival rate is often used to develop treatment selection and survival prediction models. However, unlike other types of cancer, breast cancer patients can have long survival rates. Therefore, the authors propose a novel two-level framework to provide clinical decision support for treatment selection contingent on survival prediction. Design/methodology/approach - The first level classifies patients into different survival periods using machine learning algorithms. The second level has two models with different survival rates (five-year and ten-year). Thus, based on the classification results of the first level, the authors employed Bayesian networks (BNs) to infer the effect of treatment on survival in the second level. Findings - The authors validated the proposed approach with electronic health record data from the TriNetX Research Network. For the first level, the authors obtained 85% accuracy in survival classification. For the second level, the authors found that the topology of BNs using Causal Minimum Message Length had the highest accuracy and area under the ROC curve for both models. Notably, treatment selection substantially impacted survival rates, implying the two-level approach better aided clinical decision support on treatment selection. Originality/value - The authors have developed a reference tool for medical practitioners that supports treatment decisions and patient education to identify patient treatment preferences and to enhance patient healthcare.
Keywords: Clinical decision support; Bayesian network; Machine learning; Breast cancer; Data-driven modeling (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:dtspps:dts-11-2022-0063
DOI: 10.1108/DTS-11-2022-0063
Access Statistics for this article
Digital Transformation and Society is currently edited by Professor Robin Qiu
More articles in Digital Transformation and Society from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().