EconPapers    
Economics at your fingertips  
 

Stock market prediction, COVID-19 pandemic and neural networks: an SCG algorithm application

Himanshu Goel and Bhupender Kumar Som

EconomiA, 2023, vol. 24, issue 1, 134-146

Abstract: Purpose - This study aims to predict the Indian stock market (Nifty 50) by employing macroeconomic variables as input variables identified from the literature for two sub periods, i.e. the pre-coronavirus disease 2019 (COVID-19) (June 2011–February 2020) and during the COVID-19 (March 2020–June 2021). Design/methodology/approach - Secondary data on macroeconomic variables and Nifty 50 index spanning a period of last ten years starting from 2011 to 2021 have been from various government and regulatory websites. Also, an artificial neural network (ANN) model was trained with the scaled conjugate gradient algorithm for predicting the National Stock exchange's (NSE) flagship index Nifty 50. Findings - The findings of the study reveal that Scaled Conjugate Gradient (SCG) algorithm achieved 96.99% accuracy in predicting the Indian stock market in the pre-COVID-19 scenario. On the contrary, the proposed ANN model achieved 99.85% accuracy in during the COVID-19 period. The findings of this study have implications for investors, portfolio managers, domestic and foreign institution investors, etc. Originality/value - The novelty of this study lies in the fact that are hardly any studies that forecasts the Indian stock market using artificial neural networks in the pre and during COVID-19 periods.

Keywords: COVID-19; Neural networks; Machine learning; Stock market; Prediction (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:econpp:econ-07-2022-0101

DOI: 10.1108/ECON-07-2022-0101

Access Statistics for this article

EconomiA is currently edited by Professor Joaquim Andrade

More articles in EconomiA from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:econpp:econ-07-2022-0101