EconPapers    
Economics at your fingertips  
 

Predictability of Belgian residential real estate rents using tree-based ML models and IML techniques

Ian Lenaers, Kris Boudt and Lieven De Moor

International Journal of Housing Markets and Analysis, 2023, vol. 17, issue 1, 96-113

Abstract: Purpose - The purpose is twofold. First, this study aims to establish that black box tree-based machine learning (ML) models have better predictive performance than a standard linear regression (LR) hedonic model for rent prediction. Second, it shows the added value of analyzing tree-based ML models with interpretable machine learning (IML) techniques. Design/methodology/approach - Data on Belgian residential rental properties were collected. Tree-based ML models, random forest regression and eXtreme gradient boosting regression were applied to derive rent prediction models to compare predictive performance with a LR model. Interpretations of the tree-based models regarding important factors in predicting rent were made using SHapley Additive exPlanations (SHAP) feature importance (FI) plots and SHAP summary plots. Findings - Results indicate that tree-based models perform better than a LR model for Belgian residential rent prediction. The SHAP FI plots agree that asking price, cadastral income, surface livable, number of bedrooms, number of bathrooms and variables measuring the proximity to points of interest are dominant predictors. The direction of relationships between rent and its factors is determined with SHAP summary plots. In addition to linear relationships, it emerges that nonlinear relationships exist. Originality/value - Rent prediction using ML is relatively less studied than house price prediction. In addition, studying prediction models using IML techniques is relatively new in real estate economics. Moreover, to the best of the authors’ knowledge, this study is the first to derive insights of driving determinants of predicted rents from SHAP FI and SHAP summary plots.

Keywords: Rent prediction; Residential real estate; Machine learning; Black box; Interpretable machine learning; SHapley Additive exPlanations (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eme:ijhmap:ijhma-11-2022-0172

DOI: 10.1108/IJHMA-11-2022-0172

Access Statistics for this article

International Journal of Housing Markets and Analysis is currently edited by Dr Richard Reed

More articles in International Journal of Housing Markets and Analysis from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().

 
Page updated 2025-03-19
Handle: RePEc:eme:ijhmap:ijhma-11-2022-0172