Do reliable big and cloud data analytics capabilities in manufacturing firms' supply chain boosting unique comparative advantage? A moderated-mediation model of data-driven competitive sustainability, green product innovation and green process innovation at North Africa region
Moh’d Anwer AL-Shboul
International Journal of Productivity and Performance Management, 2024, vol. 73, issue 8, 2598-2628
Abstract:
Purpose - This study attempts to explore the linkages between reliable big and cloud data analytics capabilities (RB&CDACs) and the comparative advantage (CA) that applies in the manufacturing sector in the countries located in North Africa (NA). These are considered developing countries through generating green product innovation (GPI) and using green process innovations (GPrLs) in their processes and functions as mediating factors, as well as the moderating role of data-driven competitive sustainability (DDCS). Design/methodology/approach - To achieve the aim of this study, 346 useable surveys out of 1,601 were analyzed, and valid responses were retrieved for analysis, representing a 21.6% response rate by applying the quantitative methodology for collecting primary data. Convergent validity and discriminant validity tests were applied to structural equation modeling (SEM) in the CB-covariance-based structural equation modeling (SEM) program, and the data reliability was confirmed. Additionally, a multivariate analysis technique was used via CB-SEM, as hypothesized relationships were evaluated through confirmatory factor analysis (CFA), and then the hypotheses were tested through a structural model. Further, a bootstrapping technique was used to analyze the data. We included GPI and GPrI as mediating factors, while using DDCS as a moderated factor. Findings - The empirical findings indicated that the proposed moderated-mediation model was accepted due to the relationships between the constructs being statistically significant. Further, the findings showed that there is a significant positive effect in the relationship between reliable BCDA capabilities and CAs as well as a mediating effect of GPI and GPrI, which is supported by the proposed formulated hypothesis. Additionally, the findings confirmed that there is a moderating effect represented by data-driven competitive advantage suitability between GPI, GPrI and CA. Research limitations/implications - One of the main limitations of this study is that an applied cross-sectional study provides a snapshot at a given moment in time. Furthermore, it used only one type of methodological approach (i.e. quantitative) rather than using mixed methods to reach more accurate data. Originality/value - This study developed a theoretical model that is obtained from reliable BCDA capabilities, CA, DDCS, green innovation and GPrI. Thus, this piece of work bridges the existing research gap in the literature by testing the moderated-mediation model with a focus on the manufacturing sector that benefits from big data analytics capabilities to improve levels of GPI and competitive advantage. Finally, this study is considered a road map and gaudiness for the importance of applying these factors, which offers new valuable information and findings for managers, practitioners and decision-makers in the manufacturing sector in the NA region.
Keywords: Supply chain; Reliable big data; Cloud data analytics capabilities; Comparative advantage; Data-driven competitive sustainability; Green product innovation; Green process innovation; Manufacturing firms; North Africa region (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (text/html)
https://www.emerald.com/insight/content/doi/10.110 ... d&utm_campaign=repec (application/pdf)
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eme:ijppmp:ijppm-09-2023-0455
DOI: 10.1108/IJPPM-09-2023-0455
Access Statistics for this article
International Journal of Productivity and Performance Management is currently edited by Dr Luisa Huatuco and Dr Nicky Shaw
More articles in International Journal of Productivity and Performance Management from Emerald Group Publishing Limited
Bibliographic data for series maintained by Emerald Support ().